Structural Determinants for Protein adsorption/non-adsorption to Silica Surface

نویسندگان

  • Christelle Mathé
  • Stéphanie Devineau
  • Jean-Christophe Aude
  • Gilles Lagniel
  • Stéphane Chédin
  • Véronique Legros
  • Marie-Hélène Mathon
  • Jean-Philippe Renault
  • Serge Pin
  • Yves Boulard
  • Jean Labarre
چکیده

The understanding of the mechanisms involved in the interaction of proteins with inorganic surfaces is of major interest in both fundamental research and applications such as nanotechnology. However, despite intense research, the mechanisms and the structural determinants of protein/surface interactions are still unclear. We developed a strategy consisting in identifying, in a mixture of hundreds of soluble proteins, those proteins that are adsorbed on the surface and those that are not. If the two protein subsets are large enough, their statistical comparative analysis must reveal the physicochemical determinants relevant for adsorption versus non-adsorption. This methodology was tested with silica nanoparticles. We found that the adsorbed proteins contain a higher number of charged amino acids, particularly arginine, which is consistent with involvement of this basic amino acid in electrostatic interactions with silica. The analysis also identified a marked bias toward low aromatic amino acid content (phenylalanine, tryptophan, tyrosine and histidine) in adsorbed proteins. Structural analyses and molecular dynamics simulations of proteins from the two groups indicate that non-adsorbed proteins have twice as many π-π interactions and higher structural rigidity. The data are consistent with the notion that adsorption is correlated with the flexibility of the protein and with its ability to spread on the surface. Our findings led us to propose a refined model of protein adsorption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Candida rugosa lipase immobilization parameters on magnetic silica aerogel using adsorption method

Magnetic silica aerogel in hydrophobic and hydrophilic forms were used as support to immobilize Candida rugosa lipase by adsorption method. Response surface methodology (RSM) was employed to study the effects of the three most important immobilization parameters, namely enzyme/support ratio (0.3-0.5, w/w), immobilization time (60-120 min) and alcohol percentage (20-40, %v/v) on the specific act...

متن کامل

Multifunctional clickable and protein-repellent magnetic silica nanoparticles.

Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule a...

متن کامل

Structural Stability Effects on Adsorption of Bacteriophage T 4 Lysozyme to Colloidal Silica

approved by: Circular dichroism (CD) spectra were obtained for bacteriophage T4 lysozyme and three of its mutants in the presence and absence of colloidal silica nanoparticles. Mutant lysozymes were produced by substitution of the isoleucine at position 3 with tryptophan, cysteine and leucine. Each substitution resulted in an altered structural stability, quantified by a difference in free ener...

متن کامل

Protein adsorption induced bridging flocculation: the dominant entropic pathway for nano-bio complexation.

Lysozyme-silica interactions and the resulting complexation were investigated through adsorption isotherms, dynamic and electrophoretic light scattering, circular dichroism (CD), and isothermal titration calorimetry (ITC). A thermodynamic analysis of ITC data revealed the existence of two binding modes during protein-nanoparticle complexation. Both binding modes are driven by the cooperation of...

متن کامل

Adsorption of serum albumin on silica--the influence of surface cleaning procedures.

The objective of the investigation was to study how different surface cleaning procedures affect the subsequent adsorption of bovine serum albumin (BSA) on silica. Ellipsometry was used to monitor the adsorbed amount and thickness of the protein films in situ at physiological buffer conditions. Plasma treatment was found to effectively reduce the amount of BSA on silica and on surfaces cleaned ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013